1、3 从含义角度交叉熵注重真实概率分布与预测概率分布的差异,分类问题的目标是使模型输出接近训练数据分布这与均方误差代表的欧氏距离无关,因此交叉熵更适用于分类问题交叉熵损失函数虽有其优势,但也有不足优点在于,它在更新权重时,权重的梯度与激活函数的梯度无关,预测值与实际值差距越大。
2、sigmoid函数与均方差损失函数在优化权重和偏置时存在缺陷,即在输出接近0和1时,梯度接近于0,导致学习速度变慢为解决这一问题,交叉熵损失函数被广泛用于分类问题,其梯度与误差值正相关,误差越大,学习速度越快接下来,我们通过sigmoid和softmax函数的分析,探讨交叉熵损失函数在权重和偏置梯度推导中。